Abstract
Fluoride contamination is a major problem in wastewater treatment. Metaettringite (which has previously shown enhanced anion adsorption) was investigated as a possible adsorbent to remove fluoride from low-concentration solution (25 mg-F/L). The fluoride removal properties of ettringite and metaettringite were first compared at pH 10, and metaettringite was found to be more effective. The dominant reaction mechanism for fluoride adsorption in metaettringite was found to be recrystallization of metaettringite by rehydration; this was accompanied by precipitation of calcium fluoride. The adsorption kinetics followed the pseudo-second order model. Metaettringite was also able to remove fluoride effectively in low pH environment (i.e., at pH 3.5). The influence of coexistence of sulfate ions in solution on the fluoride removal performance was investigated, and a small decrease in performance was noted. The residual fluoride concentrations obtained with higher doses of metaettringite were lower than those specified by the Japanese effluent standard (non-coastal areas: 8 mg-F/L; coastal areas: 15 mg-F/L). The fluoride removal capacity of metaettringite was compared with those of other solid materials. The observed maximum capacity was 174.7 mg-F/g-metaettringite. In the case of high fluoride concentration solution, the main removal mechanism will be changed to calcium fluoride precipitation. In general, metaettringite is regarded as promising material for fluoride removal in wastewater treatment.
Funder
Arai Science and Technology Foundation
Steel Foundation for Environmental Protection Technology
Publisher
Public Library of Science (PLoS)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献