Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems

Author:

Saalidong Benjamin M.ORCID,Aram Simon Appah,Otu Samuel,Lartey Patrick Osei

Abstract

This study evaluated the relationship between water pH and the physicochemical properties of water while controlling for the influence of heavy metals and bacteriological factors using a nested logistic regression model. The study further sought to assess how these relationships are compared across confined water systems (ground water) and open water systems (surface water). Samples were collected from 100 groundwater and 132 surface water locations in the Tarkwa mining area. For the zero-order relationship in groundwater, EC, TDS, TSS, Ca, SO42-, total alkalinity, Zn, Mn, Cu, faecal and total coliform were more likely to predict optimal water pH. For surface water however, only TSS, turbidity, total alkalinity and Ca were significant predictors of optimal pH levels. At the multivariate level for groundwater, TDS, turbidity, total alkalinity and TSS were more likely to predict optimal water pH while EC, Mg, Mn and Zn were associated with non-optimal water pH. For the surface water system, turbidity, Ca, TSS, NO3, Mn and total coliform were associated with optimal water pH while SO42-, EC, Zn, Cu, and faecal coliform were associated with non-optimal water pH. The non-robustness of predictors in the surface water models were conspicuous. The results indicate that the relationship between water pH and other water quality parameters are different in different water systems and can be influenced by the presence of other parameters. Associations between parameters are steadier in groundwater systems due to its confined nature. Extraneous inputs and physical variations subject surface water to constant variations which reflected in the non-robustness of the predictors. However, the carbonate system was influential in how water quality parameters associate with one another in both ground and surface water systems. This study affirms that chemical constituents in natural water bodies react in the environment in far more complicated ways than if they were isolated and that the interaction between various parameters could predict the quality of water in a particular system.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3