The influence of personal care products on ozone-skin surface chemistry

Author:

Morrison GlennORCID,Eftekhari AzinORCID,Fan Aixing,Majluf Francesca,Krechmer Jordan E.ORCID

Abstract

Personal care products are increasingly being marketed to protect skin from the potentially harmful effects of air pollution. Here, we experimentally measure ozone deposition rates to skin and the generation rates and yields of oxidized products from bare skin and skin coated with various lotion formulations. Lotions reduced the ozone flux to the skin surface by 12% to 25%; this may be due to dilution of reactive skin lipids with inert lotion compounds or by reducing ozone diffusivity within the resulting mixture. The yields of volatile squalene oxidation products were 25% to 70% lower for a commercial sunscreen and for a base lotion with an added polymer or with antioxidants. Lower yields are likely due to competitive reactions of ozone with lotion ingredients including some ingredients that are not intended to be ozone sinks. The dynamics of the emissions of squalene ozonation product 6 methyl-2-heptenone (6MHO) suggest that lotions can dramatically reduce the solubility of products in the skin film. While some lotions appear to reduce the rate of oxidation of squalene by ozone, this evidence does not yet demonstrate that the lotions reduce the impact of air pollution on skin health.

Funder

Alfred P. Sloan Foundation

Colgate-Palmolive Company

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference30 articles.

1. Pollution and skin: From epidemiological and mechanistic studies to clinical implications;J Krutmann;Journal of Dermatological Science,2014

2. The role of air pollutants in atopic dermatitis;K. Ahn;Journal of Allergy and Clinical Immunology,2014

3. Air Pollution and Skin Aging.;T Schikowski;Curr Envir Health Rpt.,2020

4. Pollution and acne: is there a link?;J Krutmann;Clinical, Cosmetic and Investigational Dermatology.,2017

5. Ambient ozone pollution as a risk factor for skin disorders;F Xu;British Journal of Dermatology,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3