Abstract
We propose a stacked convolutional neural network incorporating a novel and efficient pyramid residual attention (PRA) module for the task of automatic segmentation of dermoscopic images. Precise segmentation is a significant and challenging step for computer-aided diagnosis technology in skin lesion diagnosis and treatment. The proposed PRA has the following characteristics: First, we concentrate on three widely used modules in the PRA. The purpose of the pyramid structure is to extract the feature information of the lesion area at different scales, the residual means is aimed to ensure the efficiency of model training, and the attention mechanism is used to screen effective features maps. Thanks to the PRA, our network can still obtain precise boundary information that distinguishes healthy skin from diseased areas for the blurred lesion areas. Secondly, the proposed PRA can increase the segmentation ability of a single module for lesion regions through efficient stacking. The third, we incorporate the idea of encoder-decoder into the architecture of the overall network. Compared with the traditional networks, we divide the segmentation procedure into three levels and construct the pyramid residual attention network (PRAN). The shallow layer mainly processes spatial information, the middle layer refines both spatial and semantic information, and the deep layer intensively learns semantic information. The basic module of PRAN is PRA, which is enough to ensure the efficiency of the three-layer architecture network. We extensively evaluate our method on ISIC2017 and ISIC2018 datasets. The experimental results demonstrate that PRAN can obtain better segmentation performance comparable to state-of-the-art deep learning models under the same experiment environment conditions.
Funder
National Natural Science Foundation of China
The Cultivation Plan of Major Scientific Research Projects of Northwest Normal University
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献