Dermoscopic image segmentation based on Pyramid Residual Attention Module

Author:

Jiang Yun,Cheng TongtongORCID,Dong Jinkun,Liang Jing,Zhang Yuan,Lin Xin,Yao Huixia

Abstract

We propose a stacked convolutional neural network incorporating a novel and efficient pyramid residual attention (PRA) module for the task of automatic segmentation of dermoscopic images. Precise segmentation is a significant and challenging step for computer-aided diagnosis technology in skin lesion diagnosis and treatment. The proposed PRA has the following characteristics: First, we concentrate on three widely used modules in the PRA. The purpose of the pyramid structure is to extract the feature information of the lesion area at different scales, the residual means is aimed to ensure the efficiency of model training, and the attention mechanism is used to screen effective features maps. Thanks to the PRA, our network can still obtain precise boundary information that distinguishes healthy skin from diseased areas for the blurred lesion areas. Secondly, the proposed PRA can increase the segmentation ability of a single module for lesion regions through efficient stacking. The third, we incorporate the idea of encoder-decoder into the architecture of the overall network. Compared with the traditional networks, we divide the segmentation procedure into three levels and construct the pyramid residual attention network (PRAN). The shallow layer mainly processes spatial information, the middle layer refines both spatial and semantic information, and the deep layer intensively learns semantic information. The basic module of PRAN is PRA, which is enough to ensure the efficiency of the three-layer architecture network. We extensively evaluate our method on ISIC2017 and ISIC2018 datasets. The experimental results demonstrate that PRAN can obtain better segmentation performance comparable to state-of-the-art deep learning models under the same experiment environment conditions.

Funder

National Natural Science Foundation of China

The Cultivation Plan of Major Scientific Research Projects of Northwest Normal University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference58 articles.

1. Colorectal cancer statistics, 2020[J];R L Siegel;CA: a cancer journal for clinicians,2020

2. Analysis of the contour structural irregularity of skin lesions using wavelet decomposition[J];L Ma;Pattern recognition,2013

3. Computational methods for pigmented skin lesion classification in images: review and future trends[J];R B Oliveira;Neural Computing and Applications,2018

4. A survey on deep learning in medical image analysis[J];G Litjens;Medical image analysis,2017

5. Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind[J];V K Shrivastava;Computer methods and programs in biomedicine,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3