Impulse dispersion of aerosols during playing the recorder and evaluation of safety measures

Author:

Köberlein MarieORCID,Hermann Laila,Gantner Sophia,Tur Bogac,Peters Gregor,Westphalen Caroline,Benthaus Tobias,Döllinger Michael,Kniesburges StefanORCID,Echternach Matthias

Abstract

Introduction Group musical activities using wind instruments have been restricted during the CoVID19 pandemic due to suspected higher risk of virus transmission. It was presumed that the aerosols exhaled through the tubes while playing would be ejected over larger distances and spread into the room due to jet stream effects. In particular, the soprano recorder is widely used as an instrument in school classes, for beginners of all age groups in their musical education, in the context of leisure activities and in professional concert performances. Understanding the aerosol impulse dispersion characteristics of playing the soprano recorder could assist with the establishment of concepts for safe music-making. Methods Five adult professionally trained soprano recorder players (4 female, 1 male) played four bars of the main theme of L. van Beethoven’s “Ode to Joy” in low and in high octaves, as well as with 3 different potential protection devices in the high octave. For comparison they spoke the corresponding text by F. Schiller. Before each task, they inhaled .5 L of vapor from an e-cigarette filled with base liquid. The vapor cloud escaping during speaking or playing was recorded by cameras and its spread was measured as a function of time in the three spatial dimensions. The potential safety devices were rated for practicability with a questionnaire, and their influence on the sound was compared, generating a long-term average spectrum from the audio data. Results When playing in the high octave, at the end of the task the clouds showed a median distance of 1.06 m to the front and .57 m diameter laterally (maxima: x: 1.35 m and y: .97 m). It was found that the clouds’ expansion values in playing the recorder with and without safety measures are mostly lower when compared to the ordinary, raised speaking voice of the same subjects. The safety devices which covered the instrument did not show clear advantages and were rated as unpractical by the subjects. The most effective reduction of the cloud was reached when playing into a suction funnel. Conclusion The aerosol dispersion characteristics of soprano recorders seem comparable to clarinets. The tested safety devices which covered holes of the instrument did not show clear benefits.

Funder

Ministry of Science and Art of the State of Bavaria

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference40 articles.

1. Airborne transmission of respiratory viruses;CC Wang;Science,2021

2. Aerosol Transmission of SARS-CoV-2: Physical Principles and Implications;MC Jarvis;Front Public Heal,2020

3. It is Time to Address Airborne Transmission of COVID-19;L Morawska;Clin Infect Dis An Off Publ Infect Dis Soc Am,2020

4. Coronavirus disease (COVID-19): How is it transmitted? https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted (accessed December 21, 2021).

5. What science says about reducing wind instruments’ coronavirus spread;B. Ladyzhets;Sci News,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3