On the effectiveness of graph matching attacks against privacy-preserving record linkage

Author:

Heng YouzheORCID,Armknecht Frederik,Chen Yanling,Schnell RainerORCID

Abstract

Linking several databases containing information on the same person is an essential step of many data workflows. Due to the potential sensitivity of the data, the identity of the persons should be kept private. Privacy-Preserving Record-Linkage (PPRL) techniques have been developed to link persons despite errors in the identifiers used to link the databases without violating their privacy. The basic approach is to use encoded quasi-identifiers instead of plain quasi-identifiers for making the linkage decision. Ideally, the encoded quasi-identifiers should prevent re-identification but still allow for a good linkage quality. While several PPRL techniques have been proposed so far, Bloom filter-based PPRL schemes (BF-PPRL) are among the most popular due to their scalability. However, a recently proposed attack on BF-PPRL based on graph similarities seems to allow individuals’ re-identification from encoded quasi-identifiers. Therefore, the graph matching attack is widely considered a serious threat to many PPRL-approaches and leads to the situation that BF-PPRL schemes are rejected as being insecure. In this work, we argue that this view is not fully justified. We show by experiments that the success of graph matching attacks requires a high overlap between encoded and plain records used for the attack. As soon as this condition is not fulfilled, the success rate sharply decreases and renders the attacks hardly effective. This necessary condition does severely limit the applicability of these attacks in practice and also allows for simple but effective countermeasures.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3