Change in beak overhangs of cliff swallows over 40 years: Partly a response to parasites?

Author:

Wagnon Gigi S.,Pletcher Olivia M.,Brown Charles R.ORCID

Abstract

Some birds exhibit a maxillary overhang, in which the tip of the upper beak projects beyond the lower mandible and may curve downward. The overhang is thought to help control ectoparasites on the feathers. Little is known about the extent to which the maxillary overhang varies spatially or temporally within populations of the same species. The colonial cliff swallow (Petrochelidon pyrrhonota) has relatively recently shifted to almost exclusive use of artificial structures such as bridges and highway culverts for nesting and consequently has been exposed to higher levels of parasitism than on its ancestral cliff nesting sites. We examined whether increased ectoparasitism may have favored recent changes in the extent of the maxillary overhang. Using a specimen collection of cliff swallows from western Nebraska, USA, spanning 40 years and field data on live birds, we found that the extent of the maxillary overhang increased across years in a nonlinear way, peaking in the late 2000’s, and varied inversely with cliff swallow colony size for unknown reasons. The number of fleas on nestling cliff swallows declined in general over this period. Those birds with perceptible overhangs had fewer swallow bugs on the outside of their nest, but they did not have higher nesting success than birds with no overhangs. The intraspecific variation in the maxillary overhang in cliff swallows was partly consistent with it having a functional role in combatting ectoparasites. The temporal increase in the extent of the overhang may be a response by cliff swallows to their relatively recent increased exposure to parasitism. Our results demonstrate that this avian morphological trait can change rapidly over time.

Funder

National Science Foundation

National Institutes of Health

National Geographic Society

Erna and Victor Hasselblad Foundation

National Academy of Sciences

Chapman Fund of the American Museum of Natural History

American Philosophical Society

Sigma Xi

University of Tulsa

Yale University

Princeton University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3