Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease

Author:

MacIntyre April M.ORCID,Meline Valerian,Gorman Zachary,Augustine Steven P.,Dye Carolyn J.,Hamilton Corri D.,Iyer-Pascuzzi Anjali S.,Kolomiets Michael V.,McCulloh Katherine A.,Allen CaitilynORCID

Abstract

Ralstonia solanacearum causes bacterial wilt disease, leading to severe crop losses. Xylem sap from R. solanacearum-infected tomato is enriched in the disaccharide trehalose. Water-stressed plants also accumulate trehalose, which increases drought tolerance via abscisic acid (ABA) signaling. Because R. solanacearum-infected plants suffer reduced water flow, we hypothesized that bacterial wilt physiologically mimics drought stress, which trehalose could mitigate. We found that R. solanacearum-infected plants differentially expressed drought-associated genes, including those involved in ABA and trehalose metabolism, and had more ABA in xylem sap. Consistent with this, treating tomato roots with ABA reduced both stomatal conductance and stem colonization by R. solanacearum. Treating roots with trehalose increased xylem sap ABA and reduced plant water use by lowering stomatal conductance and temporarily improving water use efficiency. Trehalose treatment also upregulated expression of salicylic acid (SA)-dependent tomato defense genes; increased xylem sap levels of SA and other antimicrobial compounds; and increased bacterial wilt resistance of SA-insensitive NahG tomato plants. Additionally, trehalose treatment increased xylem concentrations of jasmonic acid and related oxylipins. Finally, trehalose-treated plants were substantially more resistant to bacterial wilt disease. Together, these data show that exogenous trehalose reduced both water stress and bacterial wilt disease and triggered systemic disease resistance, possibly through a Damage Associated Molecular Pattern (DAMP) response pathway. This suite of responses revealed unexpected linkages between plant responses to biotic and abiotic stress and suggested that R. solanacearum-infected plants increase trehalose to improve water use efficiency and increase wilt disease resistance. The pathogen may degrade trehalose to counter these efforts. Together, these results suggest that treating tomatoes with exogenous trehalose could be a practical strategy for bacterial wilt management.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference174 articles.

1. Plant pathogenic Ralstonia species

2. Top 10 plant pathogenic bacteria in molecular plant pathology;J Mansfield;Molecular Plant Pathology,2012

3. On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen;B Álvarez;Technology and Education Topics in Applied Mcrobiology and Microbial Biotechnology,2010

4. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum;J Yao;J Bacteriol,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3