A systems radiation biology approach to unravel the role of chronic low-dose-rate gamma-irradiation in inducing premature senescence in endothelial cells

Author:

Babini Gabriele,Baiocco GiorgioORCID,Barbieri Sofia,Morini Jacopo,Sangsuwan Traimate,Haghdoost Siamak,Yentrapalli Ramesh,Azimzadeh Omid,Rombouts Charlotte,Aerts An,Quintens Roel,Ebrahimian Teni,Benotmane Mohammed Abderrafi,Ramadan RaghdaORCID,Baatout Sarah,Tapio Soile,Harms-Ringdahl Mats,Ottolenghi AndreaORCID

Abstract

Purpose The aim of this study was to explore the effects of chronic low-dose-rate gamma-radiation at a multi-scale level. The specific objective was to obtain an overall view of the endothelial cell response, by integrating previously published data on different cellular endpoints and highlighting possible different mechanisms underpinning radiation-induced senescence. Materials and methods Different datasets were collected regarding experiments on human umbilical vein endothelial cells (HUVECs) which were chronically exposed to low dose rates (0, 1.4, 2.1 and 4.1 mGy/h) of gamma-rays until cell replication was arrested. Such exposed cells were analyzed for different complementary endpoints at distinct time points (up to several weeks), investigating cellular functions such as proliferation, senescence and angiogenic properties, as well as using transcriptomics and proteomics profiling. A mathematical model was proposed to describe proliferation and senescence. Results Simultaneous ceasing of cell proliferation and senescence onset as a function of time were well reproduced by the logistic growth curve, conveying shared equilibria between the two endpoints. The combination of all the different endpoints investigated highlighted a dose-dependence for prematurely induced senescence. However, the underpinning molecular mechanisms appeared to be dissimilar for the different dose rates, thus suggesting a more complex scenario. Conclusions This study was conducted integrating different datasets, focusing on their temporal dynamics, and using a systems biology approach. Results of our analysis highlight that different dose rates have different effects in inducing premature senescence, and that the total cumulative absorbed dose also plays an important role in accelerating endothelial cell senescence.

Funder

FP7-EURATOM-FISSION

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The role of mitochondria and mitophagy in cell senescence;Advances in Protein Chemistry and Structural Biology;2023

2. Tissue Reactions and Mechanism in Cardiovascular Diseases Induced by Radiation;International Journal of Molecular Sciences;2022-11-26

3. Radiation dose rate effects: what is new and what is needed?;Radiation and Environmental Biophysics;2022-10-15

4. Application of radiation omics in the development of adverse outcome pathway networks: an example of radiation-induced cardiovascular disease;International Journal of Radiation Biology;2022-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3