Breast cancer histopathological images classification based on deep semantic features and gray level co-occurrence matrix

Author:

Hao Yan,Zhang Li,Qiao Shichang,Bai YanpingORCID,Cheng Rong,Xue Hongxin,Hou Yuchao,Zhang Wendong,Zhang Guojun

Abstract

Breast cancer is regarded as the leading killer of women today. The early diagnosis and treatment of breast cancer is the key to improving the survival rate of patients. A method of breast cancer histopathological images recognition based on deep semantic features and gray level co-occurrence matrix (GLCM) features is proposed in this paper. Taking the pre-trained DenseNet201 as the basic model, part of the convolutional layer features of the last dense block are extracted as the deep semantic features, which are then fused with the three-channel GLCM features, and the support vector machine (SVM) is used for classification. For the BreaKHis dataset, we explore the classification problems of magnification specific binary (MSB) classification and magnification independent binary (MIB) classification, and compared the performance with the seven baseline models of AlexNet, VGG16, ResNet50, GoogLeNet, DenseNet201, SqueezeNet and Inception-ResNet-V2. The experimental results show that the method proposed in this paper performs better than the pre-trained baseline models in MSB and MIB classification problems. The highest image-level recognition accuracy of 40×, 100×, 200×, 400× is 96.75%, 95.21%, 96.57%, and 93.15%, respectively. And the highest patient-level recognition accuracy of the four magnifications is 96.33%, 95.26%, 96.09%, and 92.99%, respectively. The image-level and patient-level recognition accuracy for MIB classification is 95.56% and 95.54%, respectively. In addition, the recognition accuracy of the method in this paper is comparable to some state-of-the-art methods.

Funder

National Natural Science Foundation of China

Shanxi Provincial Key Research and Development Project

Fundamental Research Program of Shanxi Province

National Key Research and Development Project

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference51 articles.

1. World Health Organization. https://www.who.int/health-topics/cancer. Accessed February 25, 2022.

2. World Cancer Report. https://www.iarc.who.int/featured-news/new-world-cancer-report/. Accessed May 4, 2021.

3. A Dataset for Breast Cancer Histopathological Image Classification;FA Spanhol;IEEE Trans Biomed Eng,2016

4. Breast Cancer Histopathological Images Recognition Based on Low Dimensional Three-Channel Features;Y Hao;Frontiers in Oncology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3