Modelling long-term COVID-19 impacts on the U.S. workforce of 2029

Author:

Shutters Shade T.ORCID

Abstract

While ensuring employment opportunities is critical for global progress and stability, workers are now subject to several disruptive trends, including automation, rapid changes in technology and skill requirements, and transitions to low-carbon energy production. Yet, these trends seem almost insignificant compared to labor impact of the COVID-19 pandemic. While much has been written about the pandemic’s short-term impacts, this study analyzes anticipated long-term impacts on the labor force of 2029 by comparing original 2029 labor projections to special COVID-adjusted projections recently published by the US Bureau of Labor Statistics. Results show that future demand for nearly every type of labor skill and knowledge will increase, while the nature of work shifts from physical to more cognitive activities. Of the nearly three million jobs projected to disappear by 2029 due to COVID, over 91% are among workers without a bachelor’s degree. Among workers with a degree demand shifts primarily from business-related degrees to computer and STEM degrees. Results further show that the socialness of labor, which is important for both innovation and productivity, increases in many more industries than it decreases. Finally, COVID will likely accelerate the adoption of teleworking and slightly decrease the rate of workforce automation. These impacts, combined with a shift to more cognitive worker activities, will likely impact the nature of workforce health and safety with less focus on physical injuries and more on illnesses related to sedentary lifestyles. Overall, results suggest that future workers will need to engage more often in training and skill acquisition, requiring life-long learning and skill maintenance strategies.

Funder

National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

1. World Migration Report 2015

2. 10 Big Ideas for Future NSF Investments: Report to Congress;U.S. National Science Foundation,2016

3. The future of the energy transition in Germany;E Gawel;Energy, Sustainability and Society,2014

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3