Analysis of modified plug-in electric vehicle charger controller with grid support functionalities

Author:

R. B. SelvakumarORCID,C. Vivekanandan

Abstract

Power quality issues, which are mainly due to power electronic devices that are invariably used not only in domestic sector but also industries, still persist despite various mitigation strategies. The slow but steady invasion of Electric vehicles or Plug-in Electric Vehicles (PEVs) in recent years, in the automobile sector, adds woes to the power quality issues further. Majority of the charging systems presently available for charging PEVs are unidirectional and so supports Grid to Vehicle (G2V) mode only as the bidirectional integration of those vehicles into the grid is still a big challenge. However, Vehicle to Grid (V2G) support mode also deserves an equal importance as the PEV charger with V2G mode of operation is capable of supporting grid functionalities also, on need basis, which largely depends on the power circuit topology and controller topology it uses. Hence, in this work an improved controller topology has been designed and developed to alleviate the burdens on the grid. Support for active power demand, voltage swell and sag mitigation, in addition to catering its prime objective of charging the batteries are focused. A Second Order Generalized Integrator Phase Locked Loop (SOGI-PLL) based controller has been developed and implemented in the proposed work to improve the transient response, apart from controlling the steady-state oscillations of the grid to which it is connected to. A single phase non-isolated bidirectional PEV charger with proposed control topology has been simulated in MATLAB-Simulink for vehicle support and grid support mode of operations. The simulation proves the satisfactory operation of the proposed charger in the four quarters of active power and reactive power (PQ) plane, thus complies the design objectives of bidirectional power flow. The results obtained from the simulation show improved performance in terms of DC link voltage overshoot, steady-state oscillations, overall efficiency, voltage and current Total Harmonic Distortions (THD)

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3