Combining multiscale niche modeling, landscape connectivity, and gap analysis to prioritize habitats for conservation of striped hyaena (Hyaena hyaena)

Author:

Rezaei Sahar,Mohammadi Alireza,Malakoutikhah Shima,Khosravi RasoulORCID

Abstract

Identifying spatial gaps in conservation networks requires information on species-environment relationships, and prioritization of habitats and corridors. We combined multi-extent niche modeling, landscape connectivity, and gap analysis to investigate scale-dependent environmental relationships, and identify core habitats and corridors for a little-known carnivore in Iran, the striped hyaena (Hyaena hyaena). This species is threatened in Iran by road vehicle collisions and direct killing. Therefore, understanding the factors that affect its habitat suitability, spatial pattern of distribution, and connectivity among them are prerequisite steps to delineate strategies aiming at human-striped hyaena co-existence. The results showed that the highest predictive power and extent of habitats was obtained at the extent sizes of 4 and 2 km, respectively. Also, connectivity analysis revealed that the extent and number of core habitats and corridors changed with increasing dispersal distance, and approximately 21% of the landscape was found to support corridors. The results of gap analysis showed that 15–17% of the core habitats overlapped with conservation areas. Given the body size of the species, its mobility, and lack of significant habitat specialization we conclude that this species would be more strongly influenced by changes in habitat amount rather than landscape configuration. Our approach showed that the scale of variables and dispersal ability must be accounted for in conservation efforts to prioritize habitats and corridors, and designing conservation areas. Our results could facilitate the conservation of striped hyaena through the identification and prioritization of habitats, establishment of conservation areas, and mitigating conflicts in corridors.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3