Supplementation with dietary omega-3 PUFA mitigates fetal brain inflammation and mitochondrial damage caused by high doses of sodium nitrite in maternal rats

Author:

Sun Jingchi,Zhang WeisheORCID

Abstract

Objective Food safety and nutrition during pregnancy are important concerns related to fetal brain development. In the present study, we aimed to explore the effects of omega-3 polyunsaturated fatty acids (PUFA ω-3) on exogenous sodium nitrite intervention-induced fetal brain injury in pregnant rats. Methods During pregnancy, rats were exposed to water containing sodium nitrite (0.05%, 0.15%, and 0.25%) to establish a fetal rat brain injury model. Inflammatory factors and oxidative stress levels were detected using enzyme-linked immunosorbent assay (ELISA) or flow cytometry. Subsequently, animals were divided into three groups: control, model, and 4% PUFA ω-3. Pregnancy outcomes were measured and recorded. Hematoxylin-eosin (H&E) staining and immunohistochemistry (IHC) were utilized to observe brain injury. ELISA, quantitative real-time PCR (qRT-PCR), western blot, flow cytometry, and transmission electron microscopy (TEM) were adopted to measure the levels of inflammatory factors, the NRF1/HMOX1 signaling pathway, and mitochondrial and oxidative stress damage. Results With the increase of sodium nitrite concentration, the inflammatory factors and oxidative stress levels increased. Therefore, the high dose group was set as the model group for the following experiments. After PUFA ω-3 treatment, the fetal survival ratio, average body weight, and brain weight were elevated. The cells in the PUFA ω-3 group were more closely arranged and more round than the model. PUFA ω-3 treatment relieved inflammatory factors, oxidative stress levels, and mitochondria damage while increasing the indicators related to brain injury and NRF1/HMOX1 levels. Conclusions Sodium nitrite exposure during pregnancy could cause brain damage in fetal rats. PUFA ω-3 might help alleviate brain inflammation, oxidative stress, and mitochondrial damage, possibly through the NRF1/HMOX1 signaling pathway. In conclusion, appropriately reducing sodium nitrite exposure and increasing PUFA omega-3 intake during pregnancy may benefit fetal brain development. These findings could further our understanding of nutrition and health during pregnancy.

Funder

The Science and Technology Innovation Program of Hunan Province grants

National Key Research and Development Program of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3