A quantitative microbial risk assessment for touchscreen user interfaces using an asymmetric transfer gradient transmission mode

Author:

Di Battista AndrewORCID

Abstract

The ubiquitous use of public touchscreen user interfaces for commercial applications has created a credible risk for fomite-mediated disease transmission. This paper presents results from a stochastic simulation designed to assess this risk. The model incorporates a queueing network to simulate people flow and touchscreen interactions. It also describes an updated model for microbial transmission using an asymmetric gradient transfer assumption that incorporates literature reviewed empirical data concerning touch-transfer efficiency between fingers and surfaces. In addition to natural decay/die-off, pathogens are removed from the system by simulated cleaning / disinfection and personal-touching rates (e.g. face, dermal, hair and clothing). The dose response is implemented with an exponential moving average filter to model the temporal dynamics of exposure. Public touchscreens were shown to pose a considerable infection risk (∼3%) using plausible default simulation parameters. Sensitivity of key model parameters, including the rate of surface disinfection is examined and discussed. A distinctive and important advancement of this simulation was its ability to distinguish between infection risk from a primary contaminated source and that due to the re-deposition of pathogens onto secondary, initially uncontaminated touchscreens from sequential use. The simulator is easily configurable and readily adapted to more general fomite-mediated transmission modelling and may provide a valuable framework for future research.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference55 articles.

1. Healthline, “Want to avoid dangerous bacteria? don’t use public touch screens,” 2018.

2. M. Health, “Traces of poo have been found on every mcdonald’s touchscreen,” 2019.

3. T. W. Post, “No, mcdonald’s touch screens are not contaminated with poop,” 2018.

4. Practicability of hygienic wrapping of touchscreen operated mobile devices in a clinical setting;M. Hammon;PLOS ONE,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3