Simultaneous vehicle and lane detection via MobileNetV3 in car following scene

Author:

Deng TianminORCID,Wu Yongjun

Abstract

Aiming at vehicle and lane detections on road scene, this paper proposes a vehicle and lane line joint detection method suitable for car following scenes. This method uses the codec structure and multi-task ideas, shares the feature extraction network and feature enhancement and fusion module. Both ASPP (Atrous Spatial Pyramid Pooling) and FPN (Feature Pyramid Networks) are employed to improve the feature extraction ability and real-time of MobileNetV3, the attention mechanism CBAM (Convolutional Block Attention Module) is introduced into YOLOv4, an asymmetric network architecture of "more encoding-less decoding" is designed for semantic pixel-wise segmentation network. The proposed model employed improved MobileNetV3 as feature ex-traction block, and the YOLOv4-CBAM and Asymmetric SegNet as branches to detect vehicles and lane lines, respectively. The model is trained and tested on the BDD100K data set, and is also tested on the KITTI data set and Chongqing road images, and focuses on the detection effect in the car following scene. The experimental results show that the proposed model surpasses the YOLOv4 by a large margin of +1.1 AP50, +0.9 Recall, +0.7 F1 and +0.3 Precision, and surpasses the SegNet by a large margin of +1.2 IoU on BDD100k. At the same time, the detection speed is 1.7 times and 3.2 times of YOLOv4 and SegNet, respectively. It fully proves the feasibility and effectiveness of the improved method.

Funder

The National Key Research and Development Program of China

Chongqing Science and Technology Development Foundation

the Joint Key Research & Development Program of Sichuan and Chongqin

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference38 articles.

1. Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems;Y Li;IEEE Signal Processing Magazine,2020

2. Automatic lane identification using the roadside LiDAR sensors;J Wu;IEEE Intelligent Transportation Systems Magazine,2018

3. An Automatic Lane Marking Detection Method With Low-Density Roadside LiDAR Data;C Lin;IEEE Sensors Journal,2021

4. Pseudo-Image and Sparse Points: Vehicle Detection With 2D LiDAR Revisited by Deep Learning-Based Methods;G Chen;IEEE Transactions on Intelligent Transportation Systems,2020

5. On-road vehicle detection in varying weather conditions using faster R-CNN with several region proposal networks;R. Ghosh;Multimedia Tools and Applications,2021

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3