Microplastics prevalence in water, sediment and two economically important species of fish in an urban riverine system in Ghana

Author:

Blankson Emmanuel R.,Tetteh Patricia Nakie,Oppong Prince,Gbogbo FrancisORCID

Abstract

Urban riverine systems serve as conduits for the transport of plastic waste from the terrestrial dumpsites to marine repositories. This study presented data on the occurrence of microplastics in water, sediment, Bagrid Catfish (Chrysichthys nigrodigitatus) and Black-chinned Tilapia (Sarotherodon melanotheron) from the Densu River, an urban riverine system in Ghana. Microplastics were extracted from the samples collected from both the lentic and lotic sections of the river. The results indicated widespread pollution of the Densu River with microplastics in all the compartments studied. The average numbers of microplastic particles deposited in the Dam (2.0 ± 0.58) and Delta (2.50 ± 0.48) sections of the river were not affected by the differences in their hydrology. However, the stagnant water system of the Dam promoted the floating of larger-sized microplastics while the flowing waters of the Delta did not show any selectivity in the deposition of microplastics between sediment and the water column. The number of microplastics ingestions by the Bagrid Catfish (2.88 ± 2.11) was similar to the Black-chinned Tilapia (2.38 ± 1.66) but both species ingested lower numbers of microplastics than reported for marine fish species in coastal Ghana.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

1. Plastics Europe. Plastics—the Facts 2018. Retrieved from: https://www.plasticseurope.org/en/resources/market-data.

2. Plastic waste inputs from land into the ocean;JR Jambeck;Sci,2015

3. Interactions of microplastic debris throughout the marine ecosystem;TS Galloway;Nat. Ecol. Evol,2017

4. Humic acid alleviates the toxicity of polystyrene nanoplastic particles to Daphnia magna;OO Fadare;Environ. Sci. Nano,2019

5. Accumulation and fate of nanoand micro-plastics and associated contaminants in organisms.;F Ribeiro;TrAC, Trends Analyt. Chem,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3