Xprediction: Explainable EGFR-TKIs response prediction based on drug sensitivity specific gene networks

Author:

Park HeewonORCID,Yamaguchi Rui,Imoto Seiya,Miyano SatoruORCID

Abstract

In recent years, drug sensitivity prediction has garnered a great deal of attention due to the growing interest in precision medicine. Several computational methods have been developed for drug sensitivity prediction and the identification of related markers. However, most previous studies have ignored genetic interaction, although complex diseases (e.g., cancer) involve many genes intricately connected in a molecular network rather than the abnormality of a single gene. To effectively predict drug sensitivity and understand its mechanism, we propose a novel strategy for explainable drug sensitivity prediction based on sample-specific gene regulatory networks, designated Xprediction. Our strategy first estimates sample-specific gene regulatory networks that enable us to identify the molecular interplay underlying varying clinical characteristics of cell lines. We then, predict drug sensitivity based on the estimated sample-specific gene regulatory networks. The predictive models are based on machine learning approaches, i.e., random forest, kernel support vector machine, and deep neural network. Although the machine learning models provide remarkable results for prediction and classification, we cannot understand how the models reach their decisions. In other words, the methods suffer from the black box problem and thus, we cannot identify crucial molecular interactions that involve drug sensitivity-related mechanisms. To address this issue, we propose a method that describes the importance of each molecular interaction for the drug sensitivity prediction result. The proposed method enables us to identify crucial gene-gene interactions and thereby, interpret the prediction results based on the identified markers. To evaluate our strategy, we applied Xprediction to EGFR-TKIs prediction based on drug sensitivity specific gene regulatory networks and identified important molecular interactions for EGFR-TKIs prediction. Our strategy effectively performed drug sensitivity prediction compared with prediction based on the expression levels of genes. We also verified through literature, the EGFR-TKIs-related mechanisms of a majority of the identified markers. We expect our strategy to be a useful tool for predicting tasks and uncovering complex mechanisms related to pharmacological profiles, such as mechanisms of acquired drug resistance or sensitivity of cancer cells.

Funder

MEXT

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational Tactics for Precision Cancer Network Biology;International Journal of Molecular Sciences;2022-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3