Identification of novel therapeutic targets for Fuchs’ endothelial corneal dystrophy based on gene bioinformatics analysis

Author:

Liu ChaoORCID,Gao Zi-Qing,Li Juan,Zhou Qi

Abstract

Fuchs’ endothelial corneal dystrophy (FECD) is a disease where progressive visual impairment occurs by the thickening of the Descemet’s membrane and the gradual degeneration and loss of corneal endothelial cells. This study aimed to investigate the key changes in gene expression associated with FECD and explore potential biomarkers and new therapeutic strategies for FECD. To explore the potential therapeutic targets of FECD, we downloaded the gene expression dataset GSE171830 from the Gene Expression Omnibus (GEO) database. A total of 303 differentially expressed genes (DEGs) were identified by the limma package. The enriched Gene Ontology (GO) annotations and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DEGs mostly included the extracellular matrix organization, collagen-containing extracellular matrix, and the structural constituents of the extracellular matrix. Fifteen hub genes from the most significant module were ascertained by Cytoscape. Both collagen-containing extracellular matrix and extracellular matrix hit to ANXA1, VCAN, GPC3, TNC, IGFBP7, MATN3, and SPARCL1 genes in the GO cellular components. Among these genes, the expression of SPARCL1 was down-regulated in the FECD samples, whereas the expression of GPC3, MATN3, IGFBP7, TNC, VCAN, and ANXA1 was up-regulated in the FECD samples. Gene set enrichment analysis (GSEA) plots showed that among the 20,937 genes, SPARCL1 played an important role in three pathways, cytokine-cytokine receptor interaction, the TGF-beta signaling pathway, and antigen processing and presentation. The top three pathways enriched by the GPC3, MATN3, IGFBP7, TNC, VCAN, and ANXA1 genes were those for cytokine-cytokine receptor interaction, TGF-beta signaling, and RIG-I-like receptor signaling. In conclusion, the DEGs identified here might assist clinicians in understanding the pathogenesis of FECD. Furthermore, these identified biomarkers might serve as potential therapeutic targets for the treatment of FECD.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3