Linking robust spatiotemporal datasets to assess and monitor habitat attributes of a threatened species

Author:

Witt Chris,Davis Raymond J.,Yang Zhiqiang,Ganey Joseph L.,Gutiérrez R. J.,Healey Sean,Hedwall Shaula,Hoagland Serra,Maes Ron,Malcolm Karl,Sanderlin Jamie,Seamans Mark,Jones Gavin M.ORCID

Abstract

Accessibility of multispectral, multitemporal imagery combined with recent advances in cloud computing and machine learning approaches have enhanced our ability to model habitat characteristics across broad spatial and temporal scales. We integrated a large dataset of known nest and roost sites of a threatened species, the Mexican spotted owl (Strix occidentalis lucida), in the southwestern USA with Landsat imagery processed using the Continuous Change Detection and Classification (CCDC) time series algorithm on Google Earth Engine. We then used maximum entropy modeling (Maxent) to classify the landscape into four ‘spectral similarity’ classes that reflected the degree to which 30-m pixels contained a multispectral signature similar to that found at known owl nest/roost sites and mapped spectral similarity classes from 1986–2020. For map interpretation, we used nationally consistent forest inventory data to evaluate the structural and compositional characteristics of each spectral similarity class. We found a monotonic increase of structural characteristics typically associated with owl nesting and roosting over classes of increasing similarity, with the ‘very similar’ class meeting or exceeding published minimum desired management conditions for owl nesting and roosting. We also found an increased rate of loss of forest vegetation typical of owl nesting and roosting since the beginning of the 21st century that can be partly attributed to increased frequency and extent of large (≥400 ha) wildfires. This loss resulted in a 38% reduction over the 35-year study period in forest vegetation most similar to that used for owl nesting and roosting. Our modelling approach using cloud computing with time series of Landsat imagery provided a cost-effective tool for landscape-scale, multidecadal monitoring of vegetative components of a threatened species’ habitat. Our approach could be used to monitor trends in the vegetation favored by any other species, provided that high-quality location data such as we presented here are available.

Funder

USDA Forest Service - Southwestern Region

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3