A cardiac-null mutation of Prdm16 causes hypotension in mice with cardiac hypertrophy via increased nitric oxide synthase 1

Author:

Kang Ji-OneORCID,Ha Tae Woong,Jung Hae-Un,Lim Ji Eun,Oh Bermseok

Abstract

Hypertension or hypotension prevails as a comorbidity in patients with heart failure (HF). Although blood pressure (BP) is an important factor in managing the mortality of HF, the molecular mechanisms of changes in BP have not been clearly understood in cases of HF. We and others have demonstrated that a loss in PRDM16 causes hypertrophic cardiomyopathy, leading to HF. We aimed to determine whether BP is altered in mice that experience cardiac loss of Prdm16 and identify the underlying mechanism of BP-associated changes. BP decreased significantly only in female mice with a cardiac-null mutation of Prdm16 compared with controls, by an invasive protocol under anesthesia and by telemetric method during conscious, unrestrained status. Mice with a cardiac loss of Prdm16 had higher heart-to-body weight ratios and upregulated atrial natriuretic peptide, suggesting cardiac hypertrophy. Plasma aldosterone-to-renin activity ratios and plasma sodium levels decreased in Prdm16-deficient mice versus control. By RNA-seq and in subsequent functional analyses, Prdm16-null hearts were enriched in factors that regulate BP, including Adra1a, Nos1, Nppa, and Nppb. The inhibition of nitric oxide synthase 1 (NOS1) reverted the decrease in BP in cardiac-specific Prdm16 knockout mice. Mice with cardiac deficiency of Prdm16 present with hypotension and cardiac hypertrophy. Further, our findings suggest that the increased expression of NOS1 causes hypotension in mice with a cardiac-null mutation of Prdm16. These results provide novel insights into the molecular mechanisms of hypotension in subjects with HF and contribute to our understanding of how hypotension develops in patients with HF.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3