The spatial variability of NDVI within a wheat field: Information content and implications for yield and grain protein monitoring

Author:

Stoy Paul C.ORCID,Khan Anam M.,Wipf Aaron,Silverman NickORCID,Powell Scott L.

Abstract

Wheat is a staple crop that is critical for feeding a hungry and growing planet, but its nutritive value has declined as global temperatures have warmed. The price offered to producers depends not only on yield but also grain protein content (GPC), which are often negatively related at the field scale but can positively covary depending in part on management strategies, emphasizing the need to understand their variability within individual fields. We measured yield and GPC in a winter wheat field in Sun River, Montana, USA, and tested the ability of normalized difference vegetation index (NDVI) measurements from an unoccupied aerial vehicle (UAV) on spatial scales of ~10 cm and from Landsat on spatial scales of 30 m to predict them. Landsat observations were poorly related to yield and GPC measurements. A multiple linear model using information from four (three) UAV flyovers was selected as the most parsimonious and predicted 26% (40%) of the variability in wheat yield (GPC). We sought to understand the optimal spatial scale for interpreting UAV observations given that the ~ 10 cm pixels yielded more than 12 million measurements at far finer resolution than the 12 m scale of the harvester. The variance in NDVI observations was “averaged out” at larger pixel sizes but only ~ 20% of the total variance was averaged out at the spatial scale of the harvester on some measurement dates. Spatial averaging to the scale of the harvester also made little difference in the total information content of NDVI fit using Beta distributions as quantified using the Kullback-Leibler divergence. Radially-averaged power spectra of UAV-measured NDVI revealed relatively steep power-law relationships with exponentially less variance at finer spatial scales. Results suggest that larger pixels can reasonably capture the information content of within-field NDVI, but the 30 m Landsat scale is too coarse to describe some of the key features of the field, which are consistent with topography, historic management practices, and edaphic variability. Future research should seek to determine an ‘optimum’ spatial scale for NDVI observations that minimizes effort (and therefore cost) while maintaining the ability of producers to make management decisions that positively impact wheat yield and GPC.

Funder

Montana Wheat and Barley Committee

Directorate for Biological Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3