Isolation and characterization of a mycosubtilin homologue antagonizing Verticillium dahliae produced by Bacillus subtilis strain Z15

Author:

Lin Rongrong,Zhang Qi,Yin Li,Zhang Yiwen,Yang Qilin,Liu Kai,Wang Yingdian,Han ShengchengORCID,Zhao Huixin,Zhao Heping

Abstract

Bacillus subtilis strain Z15 (BS-Z15) was isolated from the cotton field of Xinjiang, China, and characterized as an effective biocontrol agent antagonizing plant pathogen Verticillium dahliae 991 (VD-991). However, the chemical substance produced by BS-Z15 for resistance to VD-991 remains elusive. Here, a serial purification methods including HCl precipitation, organic solvent extraction, and separation by semi-preparative High-Performance Liquid Chromatography were performed to obtain a single compound about 3.5 mg/L from the fermentation broth of BS-Z15, which has an antifungal activity against VD-991. Moreover, Fourier Transform Infrared spectrum, Nuclear Magnetic Resonance Spectroscopy, and Tandem Mass Spectrometry analyses were carried out to finally confirm that the active compound from BS-Z15 is a mycosubtilin homologue with C17 fatty acid chain. Genomic sequence prediction and PCR verification further showed that the BS-Z15 genome contains the whole mycosubtilin operon comprising four ORFs: fenF, mycA, mycB, and mycC, and the expression levels of mycA-N, mycB-Y and mycC-N reached a peak at 32-h fermentation. Although mycosubtilin homologue at 1 μg/mL promoted the germination of cotton seed, that with high concentration at 10 μg/mL had no significant effect on seed germination, plant height and dry weight. Furthermore, mycosubtilin homologue sprayed at 10 μg/mL on two-week-old cotton leaves promotes the expression of pathogen-associated genes and gossypol accumulation, and greatly decreases VD-991 infection in cotton with disease index statistics. This study provides an efficient purification strategy for mycosubtilin homologue from BS-Z15, which can potentially be used as a biocontrol agent for controlling verticillium wilt in cotton.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3