Breast cancer histopathological images recognition based on two-stage nuclei segmentation strategy

Author:

Hu HongpingORCID,Qiao Shichang,Hao Yan,Bai Yanping,Cheng Rong,Zhang Wendong,Zhang Guojun

Abstract

Pathological examination is the gold standard for breast cancer diagnosis. The recognition of histopathological images of breast cancer has attracted a lot of attention in the field of medical image processing. In this paper, on the base of the Bioimaging 2015 dataset, a two-stage nuclei segmentation strategy, that is, a method of watershed segmentation based on histopathological images after stain separation, is proposed to make the dataset recognized to be the carcinoma and non-carcinoma recognition. Firstly, stain separation is performed on breast cancer histopathological images. Then the marker-based watershed segmentation method is used for images obtained from stain separation to achieve the nuclei segmentation target. Next, the completed local binary pattern is used to extract texture features from the nuclei regions (images after nuclei segmentation), and color features were extracted by using the color auto-correlation method on the stain-separated images. Finally, the two kinds of features were fused and the support vector machine was used for carcinoma and non-carcinoma recognition. The experimental results show that the two-stage nuclei segmentation strategy proposed in this paper has significant advantages in the recognition of carcinoma and non-carcinoma on breast cancer histopathological images, and the recognition accuracy arrives at 91.67%. The proposed method is also applied to the ICIAR 2018 dataset to realize the automatic recognition of carcinoma and non-carcinoma, and the recognition accuracy arrives at 92.50%.

Funder

Natural Science Foundation of Shanxi Province

Shanxi Scholarship Council of China

National Natural Science Foundation of China

Shanxi Provincial Key Research and Development Project

National Key Research and Development Project

National Natural Science Foundation of China as National Major Scientific Instruments Development Project

the fund for Shanxi ‘1331 Project’ Key Subject Construction and Innovation Special Zone Project

Fundamental Research Program of Shanxi Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference44 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3