Characteristics of single-channel electroencephalogram in depression during conversation with noise reduction technology

Author:

Mitsukura YasueORCID,Tazawa Yuuki,Nakamura Risa,Sumali Brian,Nakagawa Tsubasa,Hori Satoko,Mimura Masaru,Kishimoto TaishiroORCID

Abstract

Background Previous studies have attempted to characterize depression using electroencephalography (EEG), but results have been inconsistent. New noise reduction technology allows EEG acquisition during conversation. Methods We recorded EEG from 40 patients with depression as they engaged in conversation using a single-channel EEG device while conducting real-time noise reduction and compared them to those of 40 healthy subjects. Differences in EEG between patients and controls, as well as differences in patients’ depression severity, were examined using the ratio of the power spectrum at each frequency. In addition, the effects of medications were examined in a similar way. Results In comparing healthy controls and depression patients, significant power spectrum differences were observed at 3 Hz, 4 Hz, and 10 Hz and higher frequencies. In the patient group, differences in the power spectrum were observed between asymptomatic patients and healthy individuals, and between patients of each respective severity level and healthy individuals. In addition, significant differences were observed at multiple frequencies when comparing patients who did and did not take antidepressants, antipsychotics, and/or benzodiazepines. However, the power spectra still remained significantly different between non-medicated patients and healthy individuals. Limitations The small sample size may have caused Type II error. Patients’ demographic characteristics varied. Moreover, most patients were taking various medications, and cannot be compared to the non-medicated control group. Conclusion A study with a larger sample size should be conducted to gauge reproducibility, but the methods used in this study could be useful in clinical practice as a biomarker of depression.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3