Inferences to estimate consumer’s diet using stable isotopes: Insights from a dynamic mixing model

Author:

Ballutaud MarineORCID,Travers-Trolet Morgane,Marchal Paul,Dubois Stanislas F.,Giraldo Carolina,Parnell Andrew C.,Nuche-Pascual M. Teresa,Lefebvre Sébastien

Abstract

Stable isotope ratios are used to reconstruct animal diet in trophic ecology via mixing models. Several assumptions of stable isotope mixing models are critical, i.e., constant trophic discrimination factor and isotopic equilibrium between the consumer and its diet. The isotopic turnover rate (λ and its counterpart the half-life) affects the dynamics of isotopic incorporation for an organism and the isotopic equilibrium assumption: λ involves a time lag between the real assimilated diet and the diet estimated by mixing models at the individual scale. Current stable isotope mixing model studies consider neither this time lag nor even the dynamics of isotopic ratios in general. We developed a mechanistic framework using a dynamic mixing model (DMM) to assess the contribution of λ to the dynamics of isotopic incorporation and to estimate the bias induced by neglecting the time lag in diet reconstruction in conventional static mixing models (SMMs). The DMM includes isotope dynamics of sources (denoted δs), λ and frequency of diet-switch (ω). The results showed a significant bias generated by the SMM compared to the DMM (up to 50% of differences). This bias can be strongly reduced in SMMs by averaging the isotopic variations of the food sources over a time window equal to twice the isotopic half-life. However, the bias will persist (∼15%) for intermediate values of the ω/λ ratio. The inferences generated using a case study highlighted that DMM enhanced estimates of consumer’s diet, and this could avoid misinterpretation in ecosystem functioning, food-web structure analysis and underlying biological processes.

Funder

I-SITE ULNE and Métropole Européenne de Lille

Science Foundation Ireland Career Development Award

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3