Neural evidence for image quality perception based on algebraic topology

Author:

Liu ChangORCID,Yu Dingguo,Ma Xiaoyu,Xie Songyun,Zhang Honggang

Abstract

In this paper, the algebraic topological characteristics of brain networks composed of electroencephalogram(EEG) signals induced by different quality images were studied, and on that basis, a neurophysiological image quality assessment approach was proposed. Our approach acquired quality perception-related neural information via integrating the EEG collection with conventional image assessment procedures, and the physiologically meaningful brain responses to different distortion-level images were obtained by topological data analysis. According to the validation experiment results, statistically significant discrepancies of the algebraic topological characteristics of EEG data evoked by a clear image compared to that of an unclear image are observed in several frequency bands, especially in the beta band. Furthermore, the phase transition difference of brain network caused by JPEG compression is more significant, indicating that humans are more sensitive to JPEG compression other than Gaussian blur. In general, the algebraic topological characteristics of EEG signals evoked by distorted images were investigated in this paper, which contributes to the study of neurophysiological assessment of image quality.

Funder

Key Research and Development Program of Zhejiang Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3