Abstract
In this paper, the algebraic topological characteristics of brain networks composed of electroencephalogram(EEG) signals induced by different quality images were studied, and on that basis, a neurophysiological image quality assessment approach was proposed. Our approach acquired quality perception-related neural information via integrating the EEG collection with conventional image assessment procedures, and the physiologically meaningful brain responses to different distortion-level images were obtained by topological data analysis. According to the validation experiment results, statistically significant discrepancies of the algebraic topological characteristics of EEG data evoked by a clear image compared to that of an unclear image are observed in several frequency bands, especially in the beta band. Furthermore, the phase transition difference of brain network caused by JPEG compression is more significant, indicating that humans are more sensitive to JPEG compression other than Gaussian blur. In general, the algebraic topological characteristics of EEG signals evoked by distorted images were investigated in this paper, which contributes to the study of neurophysiological assessment of image quality.
Funder
Key Research and Development Program of Zhejiang Province
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献