A study on a vehicle semi-active suspension control system based on road elevation identification

Author:

Yang ZhengcaiORCID,Shi Chuan,Zheng Yinglin,Gu Shirui

Abstract

A semi-active suspension system can effectively improve vehicle ride comfort and handling stability, and the active detection of road information is key to achieving semi-active suspension. To improve the road elevation perception ability of vehicles, this study proposes a continuous multiple scanning recursive matching algorithm based on a single-line LIDAR sensor. Radar recursive scanning is used to obtain the multiple superposition data of echo signals, and coordinate matching is realized between historical scanning data and current scanning data. Simultaneously, the sensor height deviation and pitch angle deviation of the sensors are regressed to obtain an accurate pavement elevation. Considering the control effect of the active vehicle suspension, a vehicle suspension model with seven degrees of freedom is established. The semi-active suspension controller is constructed using a diagonal recursive neural network algorithm, and the neural network weight is trained using a genetic algorithm. In addition, a preview diagonal recursive neural network control strategy for semi-active suspension, based on the combination of road elevation information, is proposed. The results of a hardware-in-the-loop co-simulation, which was conducted based on the Simulink control model and dSPACE real-time simulation, revealed that the ride comfort and stability of the vehicle were improved owing to a preview of the elevation information of the road ahead and the active adjustment of the shock absorber of the suspension system.

Funder

the Hubei Provincial Key Research and Development Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference29 articles.

1. Modeling and Application Based on Diagonal Recurrent Neural Network.;D Duan H;Journal of university of science & Technology Beijing,2004

2. Review on measurement technology of pavement roughness [J];Xuexun Guo;Sino-foreign highway,2009

3. Road profile estimation in heavy vehicle dynamics simulation [J];H Imine;International Journal of Vehicle Design,2011

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3