Affective computing of multi-type urban public spaces to analyze emotional quality using ensemble learning-based classification of multi-sensor data

Author:

Li RuixuanORCID,Yuizono Takaya,Li Xianghui

Abstract

The quality of urban public spaces affects the emotional response of users; therefore, the emotional data of users can be used as indices to evaluate the quality of a space. Emotional response can be evaluated to effectively measure public space quality through affective computing and obtain evidence-based support for urban space renewal. We proposed a feasible evaluation method for multi-type urban public spaces based on multiple physiological signals and ensemble learning. We built binary, ternary, and quinary classification models based on participants’ physiological signals and self-reported emotional responses through experiments in eight public spaces of five types. Furthermore, we verified the effectiveness of the model by inputting data collected from two other public spaces. Three observations were made based on the results. First, the highest accuracies of the binary and ternary classification models were 92.59% and 91.07%, respectively. After external validation, the highest accuracies were 80.90% and 65.30%, respectively, which satisfied the preliminary requirements for evaluating the quality of actual urban spaces. However, the quinary classification model could not satisfy the preliminary requirements. Second, the average accuracy of ensemble learning was 7.59% higher than that of single classifiers. Third, reducing the number of physiological signal features and applying the synthetic minority oversampling technique to solve unbalanced data improved the evaluation ability.

Funder

Humanities and Social Sciences project of the Ministry of Education of China

JAIST Research Grant

Humanities and Social Sciences project of the Educational Department of Liaoning Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3