Plant interactions control the carbon distribution of Dodonaea viscosa in karst regions

Author:

Wang Genzhu,Tang Guoyong,Pang Danbo,Liu Yuguo,Wan Long,Zhou JinxingORCID

Abstract

Biomass and carbon (C) distribution are suggested as strategies of plant responses to resource stress. Understanding the distribution patterns of biomass and C is the key to vegetation restoration in fragile ecosystems, however, there is limited understanding of the intraspecific biomass and C distributions of shrubs resulting from plant interactions in karst areas. In this study, three vegetation restoration types, a Dodonaea viscosa monoculture (DM), a Eucalyptus maideni and D. viscosa mixed-species plantation (EDP) and a Pinus massoniana and D. viscosa mixed-species plantation (PDP), were selected to determine the effects of plant interactions on the variations in the C distributions of D. viscosa among the three vegetation restoration types following 7 years of restoration. The results showed that: (1) plant interactions decreased the leaf biomass fraction. The interaction of P. massoniana and D. viscosa decreased the branch biomass fraction and increased the stem and root biomass fraction, but not the interaction of E. maideni and D. viscosa. Plant interactions changed the C concentrations of stems and roots rather than those of leaves and branches. (2) Plant interactions affected the soil nutrients and forest characteristics significantly. Meanwhile, the biomass distribution was affected by soil total nitrogen, clumping index and gap fraction; the C concentrations were influenced by the leaf area index and soil total phosphorus. (3) The C storage proportions of all the components correlated significantly with the proportion of biomass. Our results suggested that both the biomass distribution and C concentration of D. viscosa were affected by plant interactions, however, the biomass fraction not the C concentration determines the C storage fraction characteristics for D. viscosa.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

1. Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L;I. Afzal;Plant Growth Regul,2017

2. Comparative ecophysiological responses to drought of two shrub and four tree species from karst habitats of southwestern china;C.C. Liu;Trees,2011

3. Structural development and carbon dynamics of Moso bamboo forests in Zhejiang Province, China.;L. Xu;For. Eco. Manag,2018

4. Carbon allocation in forest ecosystems;M.L. Creighton;Glob. Chang. Biol,2007

5. Biomass allocation in five semi-arid afforestation species is driven mainly by ontogeny rather than resource availability;F. Noulèkoun;Ann. For. Sci,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3