Present-day and future projection of East Asian summer monsoon in Coupled Model Intercomparison Project 6 simulations

Author:

Sun Min-AhORCID,Sung Hyun MinORCID,Kim Jisun,Lee Jae-Hee,Shim Sungbo,Byun Young-Hwa

Abstract

The East Asian summer monsoon (EASM) is an influential monsoon system that provides two-thirds of the annual precipitation in the Asian region. Therefore, considerable attention has been paid to the changes in future climate. Thus far, studies on EASM characteristics have not been conducted considering specific global warming level (GWL) using Coupled Model Inter-comparison Project 6 (CMIP6) simulations. We analyze the EASM characteristics in present-day (PD) and the changes in EASM corresponding to the projections at 1.5, 2.0, and 3.0°C GWLs. The newly released 30 CMIP6 models effectively captured the migration of the monsoon in PD with a pattern correlation coefficient of 0.91, which is an improvement over that reported in previous studies. As a result of the separate analysis of the P1 (first primary peak; 33–41 pentad) and P2 (from P1 to the withdrawal; 42–50 pentad) periods, a higher frequency of weak to moderate precipitation in P2 and a smaller amount of moderate to extreme precipitation in P1 are mainly occurred. The CMIP6 models project increasing precipitation of approximately 5.7%°C−1, 4.0%°C−1, and 3.9%°C−1 for the three GWLs, respectively, with longer durations (earlier onset and delayed termination). Under the three GWLs, the projected precipitation frequency decreases below 6 mm d−1 (76th percentile) and significant increases above 29 mm d−1 (97th percentile). These changes in precipitation frequency are associated with an increasing distribution of precipitation amount above 97th percentile. Additionally, these tendencies in P1 and P2 are similar to that of the total period, while the maximum changes occur in 3.0°C GWL. In particular, future changes in EASM accelerate with continuous warming and are mainly affected by enhanced extreme precipitation (above 97th percentile). Our findings are expected to provide information for the implementation of sustainable water management programs as a part of national climate policy.

Funder

Korea Meteorological Administration

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference66 articles.

1. Origins of East Asian summer monsoon seasonality;J.C.H. Chiang;J. Clim,2020

2. A review of recent advances in research on Asian monsoon in China;J. He;Adv. Atmos. Sci,2007

3. Appraisal of Alkenone- and Archaeal Ether-Based Salinity Indicators in Mid-latitude Asian Lakes;Y. He;Earth Planet. Sci. Lett,2020

4. Future changes in monsoon duration and precipitation using CMIP6.;S. Moon;npj Clim. Atmos Sci,2020

5. Extreme precipitation over East Asia under 1.5°C and 2°C global warming targets: a comparison of stabilized and overshoot projections;D. Li;Environ. Res. Commun.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3