Unstructured clinical notes within the 24 hours since admission predict short, mid & long-term mortality in adult ICU patients

Author:

Mahbub MariaORCID,Srinivasan Sudarshan,Danciu Ioana,Peluso Alina,Begoli Edmon,Tamang Suzanne,Peterson Gregory D.

Abstract

Mortality prediction for intensive care unit (ICU) patients is crucial for improving outcomes and efficient utilization of resources. Accessibility of electronic health records (EHR) has enabled data-driven predictive modeling using machine learning. However, very few studies rely solely on unstructured clinical notes from the EHR for mortality prediction. In this work, we propose a framework to predict short, mid, and long-term mortality in adult ICU patients using unstructured clinical notes from the MIMIC III database, natural language processing (NLP), and machine learning (ML) models. Depending on the statistical description of the patients’ length of stay, we define the short-term as 48-hour and 4-day period, the mid-term as 7-day and 10-day period, and the long-term as 15-day and 30-day period after admission. We found that by only using clinical notes within the 24 hours of admission, our framework can achieve a high area under the receiver operating characteristics (AU-ROC) score for short, mid and long-term mortality prediction tasks. The test AU-ROC scores are 0.87, 0.83, 0.83, 0.82, 0.82, and 0.82 for 48-hour, 4-day, 7-day, 10-day, 15-day, and 30-day period mortality prediction, respectively. We also provide a comparative study among three types of feature extraction techniques from NLP: frequency-based technique, fixed embedding-based technique, and dynamic embedding-based technique. Lastly, we provide an interpretation of the NLP-based predictive models using feature-importance scores.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3