Practical and technical aspects for the 3D scanning of lithic artefacts using micro-computed tomography techniques and laser light scanners for subsequent geometric morphometric analysis. Introducing the StyroStone protocol

Author:

Göldner DominikORCID,Karakostis Fotios Alexandros,Falcucci ArmandoORCID

Abstract

Here, we present a new method to scan a large number of lithic artefacts using three-dimensional scanning technology. Despite the rising use of high-resolution 3D surface scanners in archaeological sciences, no virtual studies have focused on the 3D digitization and analysis of small lithic implements such as bladelets, microblades, and microflakes. This is mostly due to difficulties in creating reliable 3D meshes of these artefacts resulting from several inherent features (i.e., size, translucency, and acute edge angles), which compromise the efficiency of structured light or laser scanners and photogrammetry. Our new protocol StyroStone addresses this problem by proposing a step-by-step procedure relying on the use of micro-computed tomographic technology, which is able to capture the 3D shape of small lithic implements in high detail. We tested a system that enables us to scan hundreds of artefacts together at once within a single scanning session lasting a few hours. As also bigger lithic artefacts (i.e., blades) are present in our sample, this protocol is complemented by a short guide on how to effectively scan such artefacts using a structured light scanner (Artec Space Spider). Furthermore, we estimate the accuracy of our scanning protocol using principal component analysis of 3D Procrustes shape coordinates on a sample of meshes of bladelets obtained with both micro-computed tomography and another scanning device (i.e., Artec Micro). A comprehensive review on the use of 3D geometric morphometrics in lithic analysis and other computer-based approaches is provided in the introductory chapter to show the advantages of improving 3D scanning protocols and increasing the digitization of our prehistoric human heritage.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference73 articles.

1. A geometric morphometric relationship predicts stone flake shape and size variability;W Archer;Archaeol Anthropol Sci,2018

2. Some Applications of Geometric Morphometrics to Archaeology

3. Special Issue: Reduction Sequence, Chaîne Opératoire, and Other Methods: The Epistemologies of Different Approaches to Lithic Analysis;GB Tostevin;Introduction. PaleoAnthropology,2011

4. The history and efficacy of the chaîne opératoire approach to lithic analysis: Studying techniques to reveal past societies in an evolutionary perspective;M Soressi;PaleoAnthropology,2011

5. Advances in Geometric Morphometrics;P Mitteroecker;Evolutionary Biology,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3