The mechanical role of the metatarsophalangeal joint in human jumping

Author:

Yamauchi JunichiroORCID,Koyama Keiji

Abstract

This study investigated the mechanical role of metatarsophalangeal (MTP) joints in human jumping. Eighteen healthy young men performed three types of single-leg jumps (SJ: squat jump; CMJ: countermovement jump; HJ: standing horizontal jump) on a force plate under barefoot (BARE) and forefoot immobilisation (FFIM) conditions. For FFIM, the forefoot was immobilised around the MTP joints of the dominant leg by a custom-made splint. Force-time components and the centre of pressure (COP) trajectory were measured from the ground reaction force (GRF) in the take-off phase of jumping. The vertical jump heights calculated from the net vertical impulse were lower under FFIM than under BARE during the CMJ (p < 0.05). The HJ distance under FFIM was significantly shorter than that under BARE (p < 0.01). The relative net vertical impulse was lower under FFIM than under BARE during the CMJ (p < 0.05). During the HJ, all the horizontal GRF variables were significantly lower under FFIM than under BARE (p < 0.01), but none of the vertical GRF variables differed between the two conditions. The horizontal relative GRF in the 90–95% of the final take-off phase during the HJ was significantly lower under FFIM than under BARE (p < 0.01). Under FFIM, the COP range in the antero-posterior direction in the take-off phase of the HJ decreased (p < 0.05), whereas its range in the anterior direction for the SJ and CMJ increased (p < 0.05). The results of this study indicate that MTP joint motion can play an important role in regulating force-generating capacities of toe flexor muscles in the take-off phase of human jumping, especially in the horizontal direction of horizontal jumping.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference56 articles.

1. The evolution of the human foot, with especial reference to the ioints;H Elftman;J Anat,1935

2. The function of the toes in walking, jogging and running;RA Mann;Clin Orthop Relat Res,1979

3. The biomechanical relationship between the tendoachilles, plantar fascia and metatarsophalangeal joint dorsiflexion angle;RE Carlson;Foot Ankle Int,2000

4. The mechanics of the foot. II. The plantar aponeurosis and the arch;JH Hicks;J Anat,1954

5. The potential of toe flexor muscles to enhance performance;JP Goldmann;J Sports Sci,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3