Immunological investigation of a multiepitope peptide vaccine candidate based on main proteins of SARS-CoV-2 pathogen

Author:

Khairkhah NiloofarORCID,Bolhassani AzamORCID,Agi Elnaz,Namvar Ali,Nikyar ArashORCID

Abstract

Multiepitope vaccines could induce multiantigenic immunity against large complex pathogens with different strain variants. Herein, the in silico, in vitro and in vivo studies were used to design and develop a novel candidate antigenic multiepitope vaccine against SARS-CoV-2 pathogen. The designed multiepitope construct targets the spike glycoprotein (S), membrane protein (M), and nucleocapsid phosphoprotein (N) of SARS-CoV-2 (i.e., the S-N-M construct). This construct contains the cytotoxic T lymphocyte (CTL)-, helper T lymphocyte (HTL)-, and linear B lymphocyte (LBL)-inducing epitopes. The multiepitope s-n-m fusion gene was subcloned in prokaryotic (pET24a) and eukaryotic (pcDNA3.1) expression vectors. Its expression was evaluated in mammalian cell line using LL37 cell penetrating peptide. Moreover, the recombinant multiepitope S-N-M peptide was produced in E. coli strain. Finally, mice were immunized using homologous and heterologous regimens for evaluation of immune responses. Our data indicated that the multiepitope S-N-M peptide construct combined with Montanide 720 in homologous regimen significantly stimulated total IgG, IgG2a, IFN-γ, TNF-α, IL-15, IL-21 and IL-6, and Granzyme B secretion as compared to other groups. Moreover, the pcDNA-s-n-m/ LL37 nanoparticles significantly induced higher immune responses than the naked DNA in both homologous and heterologous regimens. In general, our designed multiepitope vaccine construct can be considered as a vaccine candidate in SARS-CoV-2 infection model.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference52 articles.

1. A novel coronavirus from patients with pneumonia in China, 2019;N Zhu;New England Journal of Medicine,2020

2. Computer-assisted multi-epitopes T-cell subunit covid-19 vaccine design;AA Yahaya;Biomed Biotechnol Res J,2021

3. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19;R Yadav;Cells,2021

4. Structural insights into coronavirus entry;MA Tortorici;Advances in Virus Research,2019

5. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein;AC Walls;Cell,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3