International trade and finance exploration using network model of computer trade platform

Author:

Zhang YiORCID,Yuan Yi

Abstract

International trade becomes increasingly frequent with the deepening of economic globalization. In order to ensure the stable and rapid development of international trade and finance, it is particularly crucial to predict the sales trend of foreign trade goods in advance through the network model of computer trade platform. To optimize the accuracy of sales forecasts for foreign trade goods, under the background of "Internet plus foreign trade", the controllable relevance big data mining of foreign trade goods sales, personalized prediction mechanism, intelligent prediction algorithm, improved distributed quantitative and centralized qualitative calculation are taken as the premise to design dynamic prediction model on export sales based on controllable relevance big data of cross border e-commerce (DPMES). Moreover, after the related experiments and comparative discussions, the forecast error ratios from the first quarter to the fourth quarter are 2.3%, 2.1%, 2.4% and 2.4% respectively, which are also within the acceptable range. The experimental results show that the design combines the advantages of openness and extensibility of Internet plus with dynamic prediction of big data, and achieves the wisdom, quantitative and qualitative prediction of the volume of goods sold under the background of "Internet plus foreign trade", which is controlled by the relevant data of foreign trade. The overall performance of this design is stronger than the previous models, has better dynamic evolution and high practical significance, and is of great significance in the development of international trade and finance.

Funder

National Social Science Foundation of China

Key Research Base Project of Philosophy and Social Sciences of Shaanxi Education Department

Soft Science Project of Shaanxi Provincial Department of Science and Technology

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference25 articles.

1. B. Organizational business intelligence and decision making using big data analytics;Y Niu;Information Processing & Management,2021

2. BIM Big Data Storage in WebVRGIS;Z H Lv;IEEE Transactions on Industrial Informatics,2019

3. A dynamic spark-based classification framework for imbalanced big data;B Abdel-Hamid N;Journal of Grid Computing,2018

4. GA-PPARM: constraint-based objective function and genetic algorithm for privacy preserved association rule mining;D Menaga;Evolutionary Intelligence,2021

5. Least lion optimisation algorithm (LLOA) based secret key generation for privacy preserving association rule hiding;D Menaga;IET Information Security,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3