COVID-19 associated hospitalization in 571 patients with fibromyalgia—A population-based study

Author:

Amital Mor,Ben-Shabat Niv,Amital HowardORCID,Buskila Dan,Cohen Arnon D.,Amital Daniela

Abstract

Objective To identify predicators of patients with fibromyalgia (FM) that are associated with a severe COVID-19 disease course. Methods We utilized the data base of the Clalit Health Services (CHS); the largest public organization in Israel, and extracted data concerning patients with FM. We matched two subjects without FM to each subject with FM by sex and age and geographic location. Baseline characteristics were evaluated by t-test for continuous variables and chi-square for categorical variables. Predictors of COVID-19 associated hospitalization were identified using univariable logistic regression model, significant variables were selected and analyzed by a multivariable logistic regression model. Results The initial cohort comprised 18,598 patients with FM and 36,985 matched controls. The mean age was 57.5± 14.5(SD), with a female dominance of 91%. Out of this cohort we extracted the study population, which included all patients contracted with COVID-19, and consisted of 571 patients with FM and 1008 controls. By multivariable analysis, the following variables were found to predict COVID-19 associated hospitalization in patients with FM: older age (OR, 1.25; CI, 1.13–1.39; p<0.001), male sex (OR, 2.63; CI, 1.18–5.88; p<0.05) and hypertension (OR, 1.75; CI, 1.04–2.95; p<0.05). Conclusion The current population-based study revealed that FM per se was not directly associated with COVID-19 hospitalization or related mortality. Yet classical risk factors endangering the general population were also relevant among patients with FM.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3