Algorithm for wireless sensor networks in ginseng field in precision agriculture

Author:

Li Changcheng,Chen DeyunORCID,Xie Chengjun,Tang You

Abstract

In the research on energy-efficient networking methods for precision agriculture, a hot topic is the energy issue of sensing nodes for individual wireless sensor networks. The sensing nodes of the wireless sensor network should be enabled to provide better services with limited energy to support wide-range and multi-scenario acquisition and transmission of three-dimensional crop information. Further, the life cycle of the sensing nodes should be maximized under limited energy. The transmission direction and node power consumption are considered, and the forward and high-energy nodes are selected as the preferred cluster heads or data-forwarding nodes. Taking the cropland cultivation of ginseng as the background, we put forward a particle swarm optimization-based networking algorithm for wireless sensor networks with excellent performance. This algorithm can be used for precision agriculture and achieve optimal equipment configuration in a network under limited energy, while ensuring reliable communication in the network. The node scale is configured as 50 to 300 nodes in the range of 500 × 500 m2, and simulated testing is conducted with the LEACH, BCDCP, and ECHERP routing protocols. Compared with the existing LEACH, BCDCP, and ECHERP routing protocols, the proposed networking method can achieve the network lifetime prolongation and mitigate the decreased degree and decreasing trend of the distance between the sensing nodes and center nodes of the sensor network, which results in a longer network life cycle and stronger environment suitability. It is an effective method that improves the sensing node lifetime for a wireless sensor network applied to cropland cultivation of ginseng.

Funder

National Natural Science Foundation of China

Key Scientific Research Project of Jilin Provincial Department of Education

Key Project of Jilin Provincial Science and Technology Department

the Project for Science and Technology Center and Science and Technology Service Platform

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient data routing for agricultural landscapes: ensemble fuzzy crossover based golden jackal approach;Signal, Image and Video Processing;2024-06-27

2. Energy-Efficient Routing Algorithms for Wireless Sensor Networks in Precision Agriculture;2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM);2024-02-21

3. Umfang und Anwendungsbereiche des von der Natur inspirierten Computings in der Bioinformatik;Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik;2024

4. The Scope and Applications of Nature-Inspired Computing in Bioinformatics;Nature-Inspired Intelligent Computing Techniques in Bioinformatics;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3