Large electromagnetic field enhancement in plasmonic nanoellipse for tunable spaser based applications

Author:

Jamil Saqib,Farooq WaqasORCID,Ullah Najeeb,Daud Khan Adnan,Khalil Usman Khan,Mosavi AmirORCID

Abstract

We theoretically demonstrated a class of plasmonic coupled elliptical nanostructure for achieving a spaser or a nanolaser with high intensity. The plasmonic ellipse is made up of gold film substrate. The proposed structure is then trialed for various light polarizations, moreover, a simple elliptical nanostructure has been chosen primarily from which different cases have been formed by geometry alteration. The structure supports strong coupled resonance mode i.e. localized surface plasmon (LSP). The localized surface plasmon resonance (LSPR) of the investigated system is numerically examined using the finite-element method (FEM). The calculations showed that the LSPR peaks and the local field intensity or near field enhancement (NFE) of the active nanosystem can be amplified to higher values by introducing symmetry-breaking techniques in the proposed ellipse and its variants. The coupled nanostructure having different stages of wavelengths can be excited with different plasmonic resonance modes by the selection of suitable gain media. In addition, a small-sized nanolaser with high tunability range can be developed using this nanostructure. The spaser phenomena are achieved at several wavelengths by changing light polarization and structure alteration methods. Giant localized field enhancement and high LSPR values enable the proposed model to be highly appealing for sensing applications, surface-enhanced Raman spectroscopy, and much more.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference28 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3