Abstract
Dengue is caused by an arbovirus that belongs to the Flaviviridae family and there are four distinct, but close related, circulating serotypes. Dengue disease is of great importance for global public health, with vaccination being its main prophylactic measure. However, there is a paucity of biological models for evaluating tetravalent dengue vaccines. The aim of this study was to evaluate the susceptibility of human cell lines HEK293T and THP-1 to a commercial dengue vaccine and test the feasibility of this approach in the development of a potency assay with human cell lines, as a methodological alternative to the golden standard potency assay with VERO cells. In this context, we used a batch of the commercial vaccine Dengvaxia® (CYD-TDV) for the infection tests. We evaluated the presence of the vaccine virus in THP-1 cells, differentiated into macrophages (dTHP-1), and in HEK293T by confocal microscopy, using 4G2 pan-flavivirus antibody. Vaccine infectivity and potency were determined by immunocolorimetric assay using monoclonal antibodies specific for each serotype. The results indicated that the human strain HEK293T was responsive to the tetravalent vaccine, as shown by the presence of virus particles in the cell cytoplasm in a pattern similar to the one observed with VERO cells. Moreover, it was possible to determine the infectivity and potency values of each vaccine virus serotype in the HEK293T, with serotype 4 prevailing over the others. Thus, the human cell line HEK293T provides a potential candidate to be used in assays to determine potency and identity of tetravalent dengue vaccines.
Publisher
Public Library of Science (PLoS)