Prediction of fluid intelligence from T1-w MRI images: A precise two-step deep learning framework

Author:

Li MingliangORCID,Jiang Mingfeng,Zhang Guangming,Liu Yujun,Zhou Xiaobo

Abstract

The Adolescent Brain Cognitive Development (ABCD) Neurocognitive Prediction Challenge (ABCD-NP-Challenge) is a community-driven competition that challenges competitors to develop algorithms to predict fluid intelligence scores from T1-w MRI images. In this work, a two-step deep learning pipeline is proposed to improve the prediction accuracy of fluid intelligence scores. In terms of the first step, the main contributions of this study include the following: (1) the concepts of the residual network (ResNet) and the squeeze-and-excitation network (SENet) are utilized to improve the original 3D U-Net; (2) in the segmentation process, the pixels in symmetrical brain regions are assigned the same label; (3) to remove redundant background information from the segmented regions of interest (ROIs), a minimum bounding cube (MBC) is used to enclose the ROIs. This new segmentation structure can greatly improve the segmentation performance of the ROIs in the brain as compared with the classical convolutional neural network (CNN), which yields a Dice coefficient of 0.8920. In the second stage, MBCs are used to train neural network regression models for enhanced nonlinearity. The fluid intelligence score prediction results of the proposed method are found to be superior to those of current state-of-the-art approaches, and the proposed method achieves a mean square error (MSE) of 82.56 on a test data set, which reflects a very competitive performance.

Funder

Center of Excellence-International Collaboration Initiative Grant

West China Hospital, Sichuan University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

1. Neural predictors of individual differences in response to math tutoring in primary-grade school children;K. Supekar,2013

2. Brain volume and intelligence: The moderating role of intelligence measurement quality—ScienceDirect;E. Gilles,2017

3. Global connectivity of prefrontal cortex predicts cognitive control and intelligence;M. W. Cole,2012

4. MRI-Based Intelligence Quotient (IQ) Estimation with Sparse Learning;L. Wang,2015

5. FreeSurfer‐based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for ENIGMA studies and other collaborative efforts;P. G. Smann

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3