Identification of four serum miRNAs as potential markers to screen for thirteen cancer types

Author:

Chen Joe W.,Dhahbi JosephORCID

Abstract

Introduction Cancer consistently remains one of the top causes of death in the United States every year, with many cancer deaths preventable if detected early. Circulating serum miRNAs are a promising, minimally invasive supplement or even an alternative to many current screening procedures. Many studies have shown that different serum miRNAs can discriminate healthy individuals from those with certain types of cancer. Although many of those miRNAs are often reported to be significant in one cancer type, they are also altered in other cancer types. Currently, very few studies have investigated serum miRNA biomarkers for multiple cancer types for general cancer screening purposes. Method To identify serum miRNAs that would be useful in screening multiple types of cancers, microarray cancer datasets were curated, yielding 13 different types of cancer with a total of 3352 cancer samples and 2809 non-cancer samples. The samples were divided into training and validation sets. One hundred random forest models were built using the training set to select candidate miRNAs. The selected miRNAs were then used in the validation set to see how well they differentiate cancer from normal samples in an independent dataset. Furthermore, the interactions between these miRNAs and their target mRNAs were investigated. Result The random forest models achieved an average of 97% accuracy in the training set with 95% bootstrap confidence interval of 0.9544 to 0.9778. The selected miRNAs were hsa-miR-663a, hsa-miR-6802-5p, hsa-miR-6784-5p, hsa-miR-3184-5p, and hsa-miR-8073. Each miRNA exhibited high area under the curve (AUC) value using receiver operating characteristic analysis. Moreover, the combination of four out of five miRNAs achieved the highest AUC value of 0.9815 with high sensitivity of 0.9773, indicating that these miRNAs have a high potential for cancer screening. miRNA-mRNA and protein-protein interaction analysis provided insights into how these miRNAs play a role in cancer.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

1. The Leading Causes of Death in the US for 2020;F.B. Ahmad;JAMA,2021

2. Assessing the value of screening tools: reviewing the challenges and opportunities of cost-effectiveness analysis;N. Iragorri;Public Health Rev,2018

3. Use of Biomarkers in Screening for Cancer;M.J. Duffy;EJIFCC,2010

4. Pancreatic cancer;J.D. Mizrahi;Lancet,2020

5. Ovarian Cancer: An Integrated Review;C. Stewart;Semin Oncol Nurs,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3