Selective blue-filtering spectacle lens protected primary porcine RPE cells against light emitting diode-induced cell damage

Author:

Yu Wing Yan,Shan Samantha Sze WanORCID,Lakshmanan Yamunadevi,Wong Francisca Siu Yin,Choi Kai YipORCID,Chan Henry Ho LungORCID

Abstract

This study aimed to investigate whether use of a selective-blue-filtering (S-BF) lens can protect cultured primary porcine RPE cells against photo-irradiation. Transmittance of S-BF and UV-filtering (UVF) lenses was characterised spectrophotometrically. RPE cells were exposed to 1700 lux of white (peak λ at 443 and 533 nm; 0.44 mW/cm2) or blue (peak λ at 448 and 523 nm; 0.85 mW/cm2) LED light for 16 h to evaluate the influence of light source on the culture. The effect of the S-BF and UVF ophthalmic lenses on RPE cell cultures under blue light irradiation was then investigated. Cell viability was compared using trypan blue and MTT assays. Intracellular ROS production was detected by a fluorescein probe CM-H2DCFDA. Expression levels of catalase and Prdx3 were analysed by western blot. Trypan blue staining showed blue light caused more cell death than no light (p = 0.001) or white light (p = 0.005). MTT assay supported the hypothesis that exposure to blue light damaged RPE cells more severely than no light (p = 0.002) or white light (p = 0.014). Under blue light, use of the S-BF lens, which blocked 17% more blue light than the UVF lens, resulted in higher cellular viability (S-BF: 93.4±1.4% vs UVF: 90.6±1.4%; p = 0.022; MTT: 1.2-fold; p = 0.029). Blue and white light both significantly increased ROS production. The S-BF lens protected cells, resulting in lower levels of ROS and higher expression of catalase and Prdx3. To conclude, blue LED light exposure resulted in significant cytotoxicity to RPE cells. Partial blockage of blue light by an S-BF lens led to protective effects against retinal phototoxicity, which were mediated by reduction of ROS and increased levels of antioxidant enzymes.

Funder

General Research Fund, Research Grants Council, HKSAR

Internal Research Grant, The Hong Kong Polytechnic University, HKSAR

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference56 articles.

1. Understanding blue light;A. Shapiro;Retina Today,2016

2. Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions;E Arnault;PloS one,2013

3. Age-related maculopathy and the impact of blue light hazard;PV Algvere;Acta Ophthalmol Scand,2006

4. Sunlight and the 10-year incidence of age-related maculopathy: the Beaver Dam Eye Study;SC Tomany;Archives of ophthalmology,2004

5. The ageing lens;AJ Bron;Ophthalmologica Journal international d’ophtalmologie International journal of ophthalmology Zeitschrift fur Augenheilkunde,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3