Abstract
Although patients with either β-thalassemia or chronic kidney disease (CKD) clinically correlate with severe osteoporosis, the mechanism by which CKD exposed to high phosphate affects bone turnover has not been characterized in β-thalassemia. We aimed to determine the effects of renal insufficiency on high phosphate intake induced changes in bone metabolism after 5/6thnephrectomy in hemizygousβ-globinknockout (BKO) mice. Male BKO mice manifested severe anemia and osteopenia. Nephrectomy induced renal fibrosis and reduced renal function as assessed by increased serum urea nitrogen levels. Moreover, nephrectomy increased bone turnover leading to bone loss in wild type (WT) but not BKO mice. In nephrectomized BKO, PBS in drinking water induced hyperphosphatemia, and hypercalcemia along with osteopenia in both cancellous and cortical bone. Histomorphometric analysis confirmed reduced cancellous bone volume due to decreased bone formation rate, osteoblast number and osteoclast number. The mRNA levels forAlpl,Sp7,Kl,Tnfsf11, andTnfsf11/Tnfrsf11bwere decreased in nephrectomized BKO mice drinking PBS. Interestingly,Fgf23, a bone-derived hormone produced by osteocytes and osteoblasts in response to hyperphosphatemia, were remarkably increased in nephrectomized BKO mice following PBS intake. Serum FGF23 and erythropoietin levels were markedly elevated in BKO mice. Nephrectomy decreased serum erythropoietin but not FGF23 levels. Hyperphosphatemia in BKO mice increased serum erythropoietin, FGF23, and PTH levels, nominating these factors as candidate mediators of bone loss in thalassemic mice with CKD during phosphate retention.
Funder
Ratchadapisek Sompoch Endowment Fund, Chulalongkorn University
Faculty Research Grant, Faculty of Dentistry, Chulalongkorn University
Second Century Fund
Publisher
Public Library of Science (PLoS)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献