Abstract
Electropermeabilization is a promising phenomenon that occurs when pulsed electric field with high frequency is applied to cells/vesicles. We quantify the required values of pulsed electric fields for the rupture of cell-sized giant unilamellar vesicles (GUVs) which are prepared under various surface charges, cholesterol contents and osmotic pressures. The probability of rupture and the average time of rupture are evaluated under these conditions. The electric field changes from 500 to 410 Vcm-1by varying the anionic lipid mole fraction from 0 to 0.60 for getting the maximum probability of rupture (i.e., 1.0). In contrast, the same probability of rupture is obtained for changing the electric field from 410 to 630 Vcm-1by varying the cholesterol mole fraction in the membranes from 0 to 0.40. These results suggest that the required electric field for the rupture decreases with the increase of surface charge density but increases with the increase of cholesterol. We also quantify the electric field for the rupture of GUVs containing anionic mole fraction of 0.40 under various osmotic pressures. In the absence of osmotic pressure, the electric field for the rupture is obtained 430 Vcm-1, whereas the field is 300 Vcm-1in the presence of 17 mOsmL-1, indicating the instability of GUVs at higher osmotic pressures. These investigations open an avenue of possibilities for finding the electric field dependent rupture of cell-like vesicles along with the insight of biophysical and biochemical processes.
Funder
Ministry of Science and Technology, Government of the People’s Republic of Bangladesh
Ministry of Education, Government of the People's Republic of Bangladesh
Information and Communication Technology Division (ICTD), (Ministry of Posts, Telecommunications and Information Technology), Bangladesh
Committee for Advanced Studies and Research (CASR) of Bangladesh University of Engineering and Technology (BUET), Bangladesh
Publisher
Public Library of Science (PLoS)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献