Calcitriol decreases HIV-1 transfer in vitro from monocyte-derived dendritic cells to CD4 + T cells, and downregulates the expression of DC-SIGN and SIGLEC-1

Author:

Alvarez Natalia,Gonzalez Sandra M.,Hernandez Juan C.ORCID,Rugeles Maria T.,Aguilar-Jimenez Wbeimar

Abstract

Dendritic cells (DCs) promote HIV-1 transmission by acting as Trojan horses, capturing viral particles, facilitating the infection of CD4+ T-cells. Vitamin D (VitD) has shown to decrease T cell activation, reducing susceptibility to HIV-1 infection of CD4+ T-cells in vitro; however, if VitD decreases viral transfer from DCs to CD4+ T-cells is unknown. In this study, we co-cultured HIV-1-pulsed immature and LPS mature monocytes-derived DCs (iDCs and LmDCs, respectively), differentiated in presence or absence of calcitriol (VitD active form), with PHA-activated autologous CD4+ T-cells from 16 healthy donors. In co-cultures of iDCs and LmDCs treated with calcitriol, there was a significant decrease in frequency of infected CD4+ T-cells, evaluated by flow cytometry. However, p24 levels evaluated by ELISA were not significantly reduced in culture supernatants. Moreover, calcitriol-treated iDCs exhibited decreased expression of genes involved in HIV-1 transfer compared to the control. Both, calcitriol-treated iDCs and LmDCs exhibit a similar gene expression profile, probably related to a transcriptional balance achieved after long treatment with calcitriol. Since calcitriol-differentiated DCs express on their surface a lower amount of DC-SIGN and SIGLEC-1 molecules, widely associated with HIV-1 transfer, suggesting that this mechanism contributes to a lower transfer of viral particles by the DCs.

Funder

MINCIENCIAS

Universidad Cooperativa de Colombia

Universidad de Antioquia UdeA, Colombia

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vitamin D and Immune System: Implications in Bone Health;Osteoporosis, Osteoarthritis and Rheumatoid Arthritis: An Agonizing Skeletal Triad;2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3