Abstract
Detoxification enzymes play significant roles in the interactions between insects and host plants, wherein detoxification-related genes make great contributions. As herbivorous pests, aphids reproduce rapidly due to parthenogenesis. They are good biological materials for studying the mechanisms that allow insect adaptation to host plants. Insect detoxification gene families are associated with insect adaptation to host plants. The Aphidinae is the largest subfamily in the Aphididae with at least 2483 species in 256 genera in 2 tribes: the Macrosiphini (with 3/4 of the species) and the Aphidini. Most aphid pests on crops and ornamental plants are Aphidinae. Members of the Aphidinae occur in nearly every region of the world. The body shape and colour vary significantly. To research the role that detoxification gene families played in the process of aphid adaptation to host evolution, we analyzed the phylogeny and evolution of these detoxification gene families in Aphidinae. In general, the P450/GST/CCE gene families contract, whereas the ABC/UGT families are conserved in Aphidinae species compared to these families in other herbivorous insects. Genus-specific expansions of P450 CYP4, and GST Delta have occurred in the genus Acyrthosiphon. In addition, the evolutionary rates of five detoxification gene families in the evolution process of Aphidinae are different. The comparison of five detoxification gene families among nine Aphidinae species and the estimated relative evolutionary rates provided herein support an understanding of the interaction between and the co-evolution of Aphidinae and plants.
Funder
Fundamental Research Funds for the Central Universities
Publisher
Public Library of Science (PLoS)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献