Microscopic and spectroscopic bioassociation study of uranium(VI) with an archaeal Halobacterium isolate

Author:

Hilpmann StephanORCID,Bader Miriam,Steudtner Robin,Müller KatharinaORCID,Stumpf Thorsten,Cherkouk Andrea

Abstract

The safe disposal of high-level radioactive waste in a deep geological repository is a huge social and technical challenge. So far, one of the less considered factors needed for a long-term risk assessment, is the impact of microorganisms occurring in the different host rocks. Even under the harsh conditions of salt formations different bacterial and archaeal species were found, e. g. Halobacterium sp. GP5 1–1, which has been isolated from a German rock salt sample. The interactions of this archaeon with uranium(VI), one of the radionuclides of major concern for the long-term storage of high-level radioactive waste, were investigated. Different spectroscopic techniques, as well as microscopy, were used to examine the occurring mechanisms on a molecular level leading to a more profound process understanding. Batch experiments with different uranium(VI) concentrations showed that the interaction is not only a simple, but a more complex combination of different processes. With the help of in situ attenuated total reflection Fourier-transform infrared spectroscopy the association of uranium(VI) onto carboxylate groups was verified. In addition, time-resolved laser-induced luminescence spectroscopy revealed the formation of phosphate and carboxylate species within the cell pellets as a function of the uranium(VI) concentration and incubation time. The association behavior differs from another very closely related halophilic archaeon, especially with regard to uranium(VI) concentrations. This clearly demonstrates the importance of studying the interactions of different, at first sight very similar, microorganisms with uranium(VI). This work provides new insights into the microbe-uranium(VI) interactions at highly saline conditions relevant to the long-term storage of radioactive waste in rock salt.

Funder

iCross project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference40 articles.

1. Nuclear Power Reactors in the World—REFERENCE DATA SERIES No. 2. Vienna: IAEA; 2020.

2. Rock salt—The mechanical properties of the host rock material for a radioactive waste repository;U Hunsche;Eng Geol,1999

3. Nuclear Energy Agency (NEA) report. Microbial Influence on the Performance of Subsurface, Salt-Based Radioactive Waste Repositories An Evaluation Based on Microbial Ecology, Bioenergetics and Projected Repository Conditions. 2018. http://inis.iaea.org/search/search.aspx?orig_q=RN:49053733.

4. Chapter 11 Biochemical basis of microbe-radionuclide interactions

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3