Test study and molecular dynamics simulation of Fe3+ modified TiO2 absorbing automobile exhaust

Author:

Lai Feng,Zhang HongliangORCID,Zhu Kongfa,Huang Man

Abstract

With the growth of the economy, the number of automobiles on the road is fast growing, resulting in substantial environmental pollution from exhaust gas emissions. In the automobile factory, some improvements have been achieved by constructing devices to degrade automobile exhaust. However, although most of the vehicle exhaust emissions have met the national standards, the exhaust gas is superimposed at the same time period due to the increasing traffic volume, making the exhaust emissions seriously reduce the air quality. Therefore, the scholars in the road field began to study new road materials to degrade vehicle exhaust, which has gradually become one of the effective ways to reduce automobile exhaust. Photocatalyst materials have been widely concerned because of their ability to oxidize harmful gases by solar photocatalysis. Yet, the effect has been not satisfactory because of the small light response range of photocatalyst material, which restricts the catalytic effect. In this study, this paper attempts to use Fe3+ to modify the TiO2, which is one of the main photocatalytic materials, to expand the range of light reaction band and to improve the degradation effect of automobile exhaust. The degradation effects of ordinary TiO2 and modified TiO2 on automobile exhaust were compared by test system in the laboratory. The results show that the modified TiO2 can effectively improve the performance of vehicle exhaust degradation. Moreover, the molecular dynamics method was used to establish the channel model of TiO2, and the dynamic process of automobile exhaust diffusion and absorption was simulated. The diffusion law and adsorption process of different types of automobile exhaust gas such as NO, CO, and CO2 in the TiO2 channel were analyzed from the molecular scale through the radial concentration distribution and adsorption energy.

Funder

the Natural Science Basic Research Plan in Guangdong Provincial Communication Department

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3