Assessing serum levels of SM22α as a new biomarker for patients with aortic aneurysm/dissection

Author:

Zhang Ning,Wang Ying-Ying,Hu Hai-Juan,Lu Gang,Xu Xin,Dou Yong-Qing,Cui Wei,Gao She-Jun,Han MeiORCID

Abstract

Background Aortic aneurysm/dissection (AAD) is now encountered more often because of the increasing prevalence of atherosclerosis and hypertension in the population. Despite many therapeutic improvements, in particular timely and successful surgery, in-hospital mortality rates are still higher. Timely identification of patients at high risk will help improve the overall prognosis of AAD. Since early clinical and radiological signs are nonspecific, there is an urgent need for accurate biomarkers. Smooth muscle 22α (SM22α) is a potential marker for AAD because of its abundant expression in vascular smooth muscle, which is involved in development of AAD. Methods We prepared three different mouse models, including abdominal aortic aneurysm, neointimal hyperplasia and atherosclerosis. SM22α levels were assessed in serum and vascular tissue of the mice. Next, the relationships between serum SM22α level and vascular lesion were studied in mice. Finally, serum from 41 patients with AAD, 107 carotid artery stenosis (CAS) patients and 40 healthy volunteers were tested for SM22α. Serum levels of SM22α were measured using an enzyme-linked immunosorbent assay (ELISA). Results Compared with the controls, serum SM22α levels were reduced in the models of aortic aneurysm, neointimal formation and atherosclerosis, and elevated in mice with ruptured aneurysm. Serum SM22α level was negatively correlated with apoptosis rate of vascular smooth muscle cells (VSMC), ratio of intima/ media (I/M) area and plaque size. Patients with AAD had significantly higher serum SM22α levels than patients with only CAS, or normal controls. Conclusion Serum SM22α could be a potential predictive marker for AAD, and regulation of VSMC is a possible mechanism for the effects of SM22α.

Funder

National Natural Science Foundation of China

Key Natural Science Foundation Projects of Hebei Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference35 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3